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ABSTRACT 

Let R be a prime PI ring that is finitely generated as an algebra over a central 
subfield. A description of the finite localizable cliques of height one prime 
ideals of R is given. This description leads to a criterion for the localizability 
of a height one prime ideal that is identical to the one discovered by Braun 
and Warfield in the noetherian case. 

In [Bra 3], Braun gives a criterion for the localizability of  a height one prime 

ideal P in a prime PI ring R that is finitely generated as a ring over a noetherian 

central subring A. However, he imposes the severe restriction that p/p2 be a 

finitely generated right R-module. Our intention here is to remove this 

restriction in the important case that R is an affine prime PI k-algebra where k 

is a field, thus answering Questions 2 and 3 of  [Bra 3] in this case. In fact, we 

prove a more general theorem that describes the clans (or cliques) of  height one 

prime ideals. 

Throughout the paper, R will denote an affine prime PI algebra: that is, R is a 

prime PI ring that is finitely generated as a ring over some central subfield k. 

Recall that R is contained in its trace ring T, a possibly larger subring of  the 

quotient ring of R. The ring T is generated over R by central elements of  the 

quotient ring and T is noetherian when R is affine; in fact T is a finite 

module over its noetherian centre Z and both T and Z are affine over k 

[Mc-R, 13.9.1 l(ii)]. The localizability criterion involves prime ideals of  T 

that lie over P and there are only finitely many of these when P has height 

one [Bra 3, Lemma 1]. A prime ideal Q of R is said to be trace-linked to 

P if there are prime ideals 15 and Q of  T such that/~ N R = P, ( 2 0  R = Q, and 
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/5 n Z = Q n Z. We will denote by Tr(P) the set of all prime ideals of R that 

are trace-linked to P. A set of prime ideals X of R is said to be trace-closed if 
Tr(P) ___ X whenever P E X. If X = X(P) is the smallest trace-closed set of 

prime ideals that contains P, then X is the trace-closure of P. 
I f P  is a prime ideal of  R, then we say that lying-over holds for P if there is a 

prime ideal/5 of T such that P = /5  n R. 

LEMMA 1. I fP  is a height one prime ideal of R then: 
(i) lying over holds for P, 
(ii) there are only finitely many prime ideals o fT  that lie over P, 
(iii) if~5 lies over P then height(/5) = 1. 

PROOF. (i) [R, Theorems 4.3.7, 4.3.8] and [Mc-R, p. 487 bot tom of the 
page]. 

(ii) and (iii) [Bra 3, Lemma 1]. 

LEMMA 2. Let P be a height one prime of R with trace-closure X. Then 
(i) Tr(P) is finite, and (ii) if  X consists entirely of height one prime ideals then .~ 
is finite. 

PROOF. (i) Let Q ~Tr(P) .  Then there are prime ideals/5 and 0 in T such 
that /5 n R = P ,  Q n R = Q, and 15 n Z = (~ n Z. Now, by Lemma l(ii), 
there are only finitely many choices for/5. Once/5 is fixed then there are only 
finitely many choices for Q by [Bra 2, Proposition 5] and [Bra-S, Lemma 2]. 

(ii) Choose 0 ~ z to be an element of P that is central in R. It is easy to see 
that i fQ E X t h e n  z E Q. Since each such Q has height one, then every Q in Xis 
a minimal prime over the ideal zR. But an affine PI ring has only finitely many 
minimal prime ideals, by [Mc-R, Corollary 13.4.4]. Thus X is a finite set. 

REMARKS. Lying over can fail for prime ideals of height greater than one, 
as an example in [Sch] shows. An example in [Am-S, p. 381] can be used to 

show that the restriction on the trace-closure X in Lemma 2(ii) is necessary, for 
in that example there exists a height one prime ideal P of R such that the trace- 
closure X(P) is infinite. (The details of this example were worked out with 

Arthur Chatters.) 
Now, let X = X(P) be the trace-closure of a height one prime ideal P and 

assume that X consists entirely of height one prime ideals and so X is finite by 
Lemma 2(ii). Set N = { n  Q I Q EX}.  The aim is to show that the semiprime 
ideal N is localizable; that is, the set ~(N) = n ~(Q)  is an Ore set, where for 
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any ideal I of  R the set c~(I) consists of  the elements of R that are regular 

modulo I. 
Since the trace ring Tis  both noetherian and module finite over its centre Z, 

the localization theory for T is very well-known, see e.g. [MO], [Bra-S] or 
[Bra-W]. The idea is to use lying over for height one primes in R to link the 
problem of  localizing in R to the known localization theory in T. To be more 

specific we need to introduce some notation. Let 2 = {(2 1(2 lies over some 
Q ~X}.  Note that .('is a finite set of height one prime ideals of T. Also, i f()  ~ 2  
and A is a prime ideal of  T such that Q N Z = A N Z then A ~X,  since 

A O R E X and A lies over A N R. Set N = ( N (~ I (2 ~ 2}.  By a result of 
Muller, [Mti, Theorem 7], the set X o f p r i m e  ideals of T tha t  are minimal over 
A? form a finite union of clans and so A?is a localizable semiprime ideal of T. In 
fact, this localization is central localization [MO]. 

The plan is to exploit the existence of the localization of  fi" in T. Fix the 
following notation: 6e = ~R(N), ~ = ~ r (N)  and ~ the set of central elements 
for which T~ = T~. Thus, i f p , . . . ,  p, are the distinct prime ideals in Z such 
that (~ O Z = p~, for 0 E 2 ,  then ~ = Z \ ( p ~  U • . .  U p,), by [Mii]. 

LEMMA 3. 6a c_ ~ .  

PROOF. It is enough to show that if P , / s a t e  height one prime ideals of R, T 
respectively, such that/5 n R = P, then ~R(P) _c ~r(/5). For then, 

S =  R(N) = { n   (Q)I Q@x) 

c_ ( n   e(O) [ d e 2 ]  = 

Let c E ~R(P) and let I be the biggest two-sided ideal of R that is contained 
in cR + P. Note that P c I, by [Mc-R, 13.2.9]. Now Tis a central extension of 
R, so I T  is an ideal of T. Suppose that tc E/5 for some t ~ T \ /5 .  Then 
TtT .  I T  = T t lT  C_ TtcT + TtPT c_/5. Since TtT  fZ P we conclude that I T  c_/5. 

But then I __c t5 n R = P, a contradiction. Hence c E ~r(/5). 

LEMMA 4. Let c ~  and P E X .  Then c T N R g P .  In particular, 

c T n 6 e ~ .  

PROOF. Let (~ be any prime ideal of T that is minimal over c. Then 
height (Q)= 1, by the principal ideal theorem [Mc-R, 4.1.11], since T is 
noetherian. Now c ~ ~, ((~), so (~ ~ 2 .  Thus, all the prime ideals that are 
minimal over cT lie outside X and so there exist prime ideals (2~ . . . . .  Q, 
(not necessarily distinct) in T such that 1-IF=~ (~i c_ cT. Now each (~i n R 
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is a nonzero prime ideal of  R that is not contained in X (for otherwise (~i, 

lying over Qi n R, would be in .~). Hence 0 ~ 1-IF_ ~ (Qi n R ) g P ,  since P E X .  

But l'If=~ (0_.~ n R) c_ cT n R,  so cT n R g P .  An easy argument shows that 
c T N 6 e ~ Z .  

The previous two Lemmas provide the tools for moving between R and T. 

We need to define symbolic powers for certain ideals in R, but because of the 

lack of chain conditions in R it is not obvious that the usual type of definition 

produces a two-sided ideal. We avoid the problem by extending and contract- 

ing between R and T. 

Let I _ R be an ideal of  R and T and define symbolic powers, for each 

m>_- l, by 

I (") = (ITs)" n R. 

Note that I t") is a two-sided ideal of  R and that 

I ~") = ( T ~ I ) "  n R -- I " T .  n R = ( I T s ) "  n R .  

The next result shows that these symbolic powers behave as one would expect. 

LEMMA 5. Let I be a common ideal o f  R and T. I f  r E I  (") then 

(i) there exists s E 5¢ such that rs E I",  and 

(ii) there exists s E 5¢ such that sr E1 m. 

PROOF. (i) Since r E I t"), there exists c E c~ such that rc E I".  Thus rcT c_ 
I" ,  since I is an ideal of T. Now there exists s E cT N ~9 °, by Lemma 4, and so 

rs E I",  as required. (ii) follows by a symmetric argument. 

The conductor C of T into R is a nonzero common ideal of  R and T, by 

[Mc-R, 13.9.6], and so 0 ~ CNis an ideal of  Tthat  is contained in N(note that 

N T  = TN since Tis a central extension of R). L e t / b e  the biggest ideal of  Tthat  

is contained in N. 

LEMMA 6. I f I  is the biggest ideal o f T  that is contained in N then,for each 
m >_- 1, N is the nilpotent radical o f I  t"). 

PROOF. If r E I t") then there exists s E 5e such that rs E I" c_C_ N. Thus r E N 

and so I tm) C_ N. It is enough to show that N" C_ It"), for some n. To achieve this 

it is sufficient to show that I tin) contains a product of  members of X. Now there 

exist not necessarily distinct prime ideals P~ . . . . .  P, minimal over I tin) such 

that P~. • • P~ _ I t"), by [Bra 1]. Suppose that n has been chosen as small as 

possible. Note that for any ideals A, B of R, A B T ,  = (AT~)(BT,), since 



Vol. 67, 1989 H E I G H T  ONE PRIME IDEALS 349 

T is a central extension of R and ~ consists of  central elements. Suppose that 

P~ $ X .  Then P~ n .5~ # ~ and so P~ n ~ ÷ ~ by Lemma 3. Hence P~T, = 

P,T  = = T . .  Thus 

e , .  . . .P T, = e , .  . . P n T ,  c_ ( I T s ) "  

and so 

PL" " " P i - l P i + l "  " "Pn  C_ (ITs)" n R = I tin), 

a contradiction. Hence each P~ E X, as required. 

LEMMA 7. I f  I is the biggest ideal o f  T that is contained in N, then 

~(N)  C_ ~(It")), for each m > 1. 

PROOF. Let s ~ .~ = ~(N) and suppose that rs E I  tin) for some r ~ R .  Then 

there exists st E .9 ~ such that r(ss~) = (rs)sl E I " ,  by Lemma 5. Now ssz E .9 ~ C_ 

~ ,  so r~I"(ss i )  -~ C_I"T~. Hence r E I " T ~  n R = it,,). A symmetric argu- 

ment shows that sr EIt") implies that r ~ I  t"), so ~(N)  _c ~(It")). 

Experts will recognize the condition ~(N)_c ~q(I t")) as the condition 

appearing in Small's Theorem on the existence of artinian quotient rings. 

However the rings R / I  t") need not be noetherian and so Small's Theorem is not 

immediately applicable. We get around this problem by using properties of 

Gelfand-Kirillov dimension and will use [KL] as a general reference. 

COROLLARY 8. I f  a E R and s ~ .9 ~, then there exist elements b ~ R,  sj ~ 5¢, 

and g ~ I  t"), such that 

as, - sb = g. 

PROOF. Set A = R / I  t') and B = N / I  tin), so that B is the nilpotent radical of  

the ringA and ~(B) _ ~(0) by Lemma 6 and Lemma 7. We need to show that 

~(B) is a right Ore set in A. Now any affine prime PI algebra has finite, integral 

Gelfand-Kirillov dimension, by [KL, Corollary 10.6]. Let GKdim(R) = n. If 

P ~ X  then height(P)= 1, so G K d i m ( R / P ) =  n - 1, by Schelter's Catenarity 

Theorem [Sch] and [KL, Theorem 10.10]. Since I t") is a nonzero ideal of  the 

prime PI ring R, GKdim(RII  °')) <_- n - 1, by [KL, Proposition 3.15]. Hence 

(m > > __ n - 1 > GKdim(A)= GKdim(R// ~= GKdim(R/N)= GKdim(R/P)= n I. 

Thus GKdim(A) = GKdim(A/B) = n - 1, and i f P  is a minimal prime ideal of 

A then GKdim(A/P)= n - 1 also. 

Let a ~A.and c E ~(B) c_ if(0). Set E = (e CA [ ae ~cA }. Then left multip- 
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lication by a produces an embedding of A /E  into A/cA. Thus GKdim(A/E)  < 

GKdim(A/cA ) < n - 1, since c E cg(0). I f P  is a minimal prime ideal of  A then 

GKdim(A/E  + P) <= GKdim(A/E)  < n - 1 = GKdim(A/P).  

It follows that E + P/P is an essential right ideal ofA/P,  by [KL, Lemma 5.12 

and Lemma 5.13]. Thus (E + P) n ~ (P)  4 ~ ~ and so E n ~q(P) :~ ~ .  An easy 

argument shows that E n ~(B)  # ~ ,  and the result follows. 

REMARK. This is the only place where we use the condition that R is attine 

over a field. Everything else works for R affine over a central noetherian 

subring. 

In our attempt to localize at Cg(N) we have now shown that this is possible 

modulo I t"), for each m >_- I. The usual next step is to use an Artin-Rees type 

argument. In order to do this, we need to move back up to the localization of  

the trace ring. 

PROPOSITION 9. I f I  is the biggest ideal o f T  that is contained in N, then I~e is 

an ideal o f  T ,  that has the Artin-Rees property. 

PROOI:. Let J be the Jacobson radical of  the semilocal ring T , .  

Then J = /V ,  and so I~e c_c_ J ,  since I _  N c_ ~ .  Now the maximal ideals of  
T ,  are induced from the members of  ,~ and these are all height one prime 

ideals. Hence T~ is a semilocal noetherian prime PI ring with Krull dimension 

one. Thus T , / I ,  is artinian and so J"C_ I , ,  for some m; in a similar 

manner one sees that J has the Artin-Rees property. Let E be any right ideal of  

T~. Then there exists n such that E n J"  C_EJ". Hence E O I~ c__ 

E A J "  C_EJ m C_EI,. 

COROLLARY 10. N is a localizable semiprime ideal o fR .  

PROOF. Let a E R and s E .5¢ = ~(N). Set E = aR + sR. There exists an 

integer m > 1 such that E n I~ c_ ET~ n I~ c_ ET~I~ = EI~, by Proposition 

9. Now there exist d E 5¢', b E R  and g EI t ' )  such that ad - sb = g, by Lemma 

8. Note that 

g = ad - sb E E  N I ~") C_ E n I~ c_ EI~ = aI~ + sI~. 

Set g = ax + sy, for some x, y EI~  and choose c E ~ such that sc, yc E l .  Then 

xcT,  ycT C_ I, since I is an ideal of  T. Now there exists an element Sl E cT n b °, 

by Lemma 4. Note that xst E x c T  c_ I and similarly ys~ E I .  Thus adst - SbSl = 
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gs~ = axs~ + sys~ and so a(ds~ - xs~) = s(bsl + ysO. Although x, y need not be 
in R the elements xs~ and yst are in I and so in R. Set 

s 2 = d s j - x s ~ R  and b l = b s ~ + y s l E R  

and note that ds, E6¢ and x s ~ I  c_ N, so $ 2 ~ .  Thus the equation as2 -- sbt 
verifies the Ore condition for ~ in R. 

In summary, we have 

THEOREM 11. Let R be an affine prime PI algebra and let P be a height one 
prime ideal of  R. I f  the trace-closure X = X(P) consists entirely of  height one 
prime ideals of R, then { 0  Z(Q) I Q ~ x }  is an Ore set. 

Looking at the special case where Tr(P) = {P}, we have 

THEOREM 12. Let R be an affine prime PI algebra and let P be a height one 
prime ideal of R. Then the following are equivalent: 

(i) Tr(e)= (e), 
(ii) P is right localizable, 

(iii) P is left localizable. 

PROOF. IfTr(P) = {P} then X(P) = {P}, so Theorem 11 gives (i)=, (ii), (iii). 
(ii) =* (i). This is essentially proved in [Bra-W], but although they assume R 

noetherian, this condition is not needed at height one. Let P be right localiz- 
able and suppose that Q E Tr(P). Thus there exist prime ideals/5, ~ in T such 
that P --/5 n R, Q = Q n R and/5  n Z = 0 n Z. Since T is centrally gener- 
ated over R and ~(P)  is a right Ore set in R, it follows that ~(P)  is a right Ore 
set in T. Now, certainly, 

n P c_ n P n R = n P = 

so ~(P)  _c ~(/5). Now/5 and O belong to the same clique, by [MO, Theorem 7] 
or [Bra-W, Proposition 3], so ~(P)  _C ~(Q).  If  Q~=P then Q f3 ~(P)  ~ ~ ,  
thus Q __c P. Since height(P) --- 1, this forces Q = P. Hence Tr(P) = {P). 

(iii)=* (i) follows in a similar way. 

There seems to be little chance ofgeneralising these ideas to primes of  height 
greater than one. Indeed, lying over may fail and so trace-linkage makes little 
sense. Some progress might be possible for rings of generic matrices, for in this 
case lying over does hold [Am-S, Theorem 4.3]. 
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