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ABSTRACT
Let R be a prime PI ring that is finitely generated as an algebra over a central
subfield. A description of the finite localizable cliques of height one prime
ideals of R is given. This description leads to a criterion for the localizability
of a height one prime ideal that is identical to the one discovered by Braun
and Warfield in the noetherian case.

In [Bra 3], Braun gives a criterion for the localizability of a height one prime
ideal Pin a prime PI ring R that is finitely generated as a ring over a noetherian
central subring 4. However, he imposes the severe restriction that P/P? be a
finitely generated right R-module. Our intention here is to remove this
restriction in the important case that R is an affine prime PI &-algebra where &
is a field, thus answering Questions 2 and 3 of [Bra 3] in this case. In fact, we
prove a more general theorem that describes the clans (or cliques) of height one
prime ideals.

Throughout the paper, R will denote an affine prime PI algebra: thatis, Risa
prime PI ring that is finitely generated as a ring over some central subfield k.
Recall that R is contained in its trace ring T, a possibly larger subring of the
quotient ring of R. The ring T is generated over R by central elements of the
quotient ring and T is noetherian when R is affine; in fact T is a finite
module over its noetherian centre Z and both T and Z are affine over k
[Mc-R, 13.9.11(i1)]. The localizability criterion involves prime ideals of T
that lie over P and there are only finitely many of these when P has height
one [Bra 3, Lemma 1]. A prime ideal Q of R is said to be trace-linked to
P if there are prime ideals Pand §of Tsuchthat PN R =P, N R =, and
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PN Z =0 nZ. We will denote by Tr(P) the set of all prime ideals of R that
are trace-linked to P. A set of prime ideals X of R is said to be trace-closed if
Tr(P) C X whenever PEX. If X = X(P) is the smallest trace-closed set of
prime ideals that contains P, then X is the trace-closure of P.

If Pis a prime ideal of R, then we say that lying-over holds for P if there isa
prime ideal P of T such that P = P N R.

LEMMA 1. IfPis a height one prime ideal of R then:

(i) lying over holds for P,

(11) there are only finitely many prime ideals of T that lie over P,
(iii) if P lies over P then height(P) = 1.

ProofF. (i) [R, Theorems 4.3.7, 4.3.8] and [Mc-R, p. 487 bottom of the
page].
(i1) and (i11) [Bra 3, Lemma 1].

LEMMA 2. Let P be a height one prime of R with trace-closure X. Then
(1) Tr(P) is finite, and (ii) if X consists entirely of height one prime ideals then X
is finite.

PROOF. (i) Let Q ETr(P). Then there are prime ideals P and Q in T such
that PNR=P, JNR=Q, and PNZ=0 NZ. Now, by Lemma 1(ii),
there are only finitely many choices for £. Once P is fixed then there are only
finitely many choices for § by [Bra 2, Proposition 5] and [Bra-S, Lemma 2].

(ii) Choose 0 # z to be an element of P that is central in R. It is easy to see
that if Q € X then z € Q. Since each such Q has height one, then every Q in X is
a minimal prime over the ideal zR. But an affine PI ring has only finitely many
minimal prime ideals, by [Mc-R, Corollary 13.4.4]. Thus X is a finite set.

REMARKS. Lying over can fail for prime ideals of height greater than one,
as an example in [Sch] shows. An example in [Am-S, p. 381] can be used to
show that the restriction on the trace-closure X in Lemma 2(ii) is necessary, for
in that example there exists a height one prime ideal P of R such that the trace-
closure X(P) is infinite. (The details of this example were worked out with
Arthur Chatters.)

Now, let X = X(P) be the trace-closure of a height one prime ideal P and
assume that X consists entirely of height one prime ideals and so X is finite by
Lemma 2(ii). Set N = {1 Q | Q € X}. The aim is to show that the semiprime
ideal N is localizable; that is, the set €(N) =) €(Q) is an Ore set, where for
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any ideal I of R the set €(/) consists of the elements of R that are regular
modulo /.

Since the trace ring 7 is both noetherian and module finite over its centre Z,
the localization theory for T is very well-known, see e.g. [Mi], [Bra-S] or
[Bra-W]. The idea is to use lying over for height one primes in R to link the
problem of localizing in R to the known localization theory in 7. To be more
specific we need to introduce some notation. Let X = {Q | O lies over some
Q € X}. Note that X is a finite set of height one prime ideals of T. Also, if 0 € X
and A is a prime ideal of T such that 0 N Z =4 N Z then 4 € X, since
ANREX and A lies over A NR. Set N={NQ|Q€EX). By a result of
Miiller, [Mii, Theorem 7], the set X of prime ideals of T that are minimal over
N form a finite union of clans and so N is a localizable semiprime ideal of 7. In
fact, this localization is central localization [Mi).

The plan is to exploit the existence of the localization of N in T. Fix the
following notation: & = €x(N), 2 = €(N)and € the set of central elements
for which T, = Ty. Thus, if p,, . . ., p, are the distinct prime ideals in Z such
that O N Z = p,, for OEX, then € =Z\(p, U - - - U p,), by [Mii].

LEmMMA 3. ¥ C 9.

ProoF. It is enough to show that if P, P are height one prime ideals of R, T
respectively, such that P N R = P, then €x(P)C € +(P). For then,

¥ = €x(N)={N 6(Q)| Qe X}
C(N6Q)|0eX)=6W).

Let c € €;(P) and let I be the biggest two-sided ideal of R that is contained
in cR + P. Note that P - I, by [Mc-R, 13.2.9]. Now T is a central extension of
R, so IT is an ideal of T. Suppose that tc€P for some tET\P. Then
TtT-IT = THT C TtcT + TtPT C P. Since TtT € P we conclude that IT C P.
But then I C P N R = P, a contradiction. Hence ¢ € €(P).

LEMMA 4. Let ¢c€E%€ and PEX. Then ¢cT NREP. In particular,
ITNF+J.

Proor. Let  be any prime ideal of T that is minimal over ¢. Then
height(Q) = 1, by the principal ideal theorem [Mc-R, 4.1.11], since T is
noetherian. Now ¢ & 6(0), so Q& X. Thus, all the prime ideals that are
minimal over ¢T lie outside X and so there exist prime ideals Q,, ..., J,
(not necessarily distinct) in T such that T, O, C ¢T. Now each O, N R
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is a nonzero prime ideal of R that is not contained in X (for otherwise J;,
lying over 0; N R, would be in X). Hence 0 # T, (J; N R)Z P, since PE X.
But T, (0, NR)CcT NR, so cT N RZP. An easy argument shows that
TN+,

The previous two Lemmas provide the tools for moving between R and 7.
We need to define symbolic powers for certain ideals in R, but because of the
lack of chain conditions in R it is not obvious that the usual type of definition
produces a two-sided ideal. We avoid the problem by extending and contract-
ing between R and T.

Let I C R be an ideal of R and T and define symbolic powers, for each
mz=1, by

I™=ITH™ N R.

Note that I is a two-sided ideal of R and that
I =(T,H"NR=I"T¢yNR=(UTy)™" NR.
The next result shows that these symbolic powers behave as one would expect.

LEMMA 5. Let I be a common ideal of R and T. If r EI™ then
(i) there exists s € & such that rs €EI™, and
(ii) there exists s € & such that sr €™,

PrOOF. (i) Since r €1, there exists ¢ € € such that rc €I™. Thus rcT C
I™, since I is an ideal of T. Now there exists s €c¢T N &, by Lemma 4, and so
rs €I, as required. (i) follows by a symmetric argument.

The conductor C of T into R is a nonzero common ideal of R and T, by
[Mc-R, 13.9.6], and so 0 # CN is an ideal of T that is contained in N (note that
NT = TNsince T'is a central extension of R). Let I be the biggest ideal of T that
is contained in N.

LEMMA 6. IfIis the biggest ideal of T that is contained in N then, for each
m = 1, N is the nilpotent radical of I™.

ProoF. If r €I then there exists s € & such that rs €I" C N. Thusr €N
and so I™ C N. It is enough to show that N* C I for some n. To achieve this
it is sufficient to show that /™ contains a product of members of X. Now there
exist not necessarily distinct prime ideals P, ..., P, minimal over I such
that P,---P, CI™, by [Bra 1]. Suppose that n has been chosen as small as
possible. Note that for any ideals A, B of R, ABT = (AT XBT), since
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T is a central extension of R and € consists of central elements. Suppose that
Pe¢X. Then PN ¥+ andso P,N Z # & by Lemma 3. Hence P.T, =
P,‘Tg = Tg = Tg‘. Thus

PP _\Pyy»--PTg=P - -PT,CUTH™
and so
P-+-P_\P - P, CUTH)" N R =I",
a contradiction. Hence each P, € X, as required.

LEmMa 7. If I is the biggest ideal of T that is contained in N, then
E(N) C €(I™), for each m = 1.

PROOF. Lets € ¥ = é(N) and suppose that rs €I™ for some r ER. Then
there exists 5, €.% such that r(ss,) = (rs)s; €I, by Lemma 5. Now s5, €% C
2, so r€I™(ss)) ' CI"T,. Hence rEI™T, N R =1"™, A symmetric argu-
ment shows that sr €™ implies that r EI'™, so €(N) C €(I™).

Experts will recognize the condition €(N)C €(I"™) as the condition
appearing in Small’s Theorem on the existence of artinian quotient rings.
However the rings R/I™ need not be noetherian and so Small’s Theorem is not
immediately applicable. We get around this problem by using properties of
Gelfand-Kirillov dimension and will use [KL] as a general reference.

COROLLARY 8. Ifa€Rands € P, then there exist elementsb ER,5,€ L,
and g €I'™, such that

as,—sb=g.

PrROOF. SetA = R/I"™ and B = N/I™, so that B is the nilpotent radical of
the ring 4 and 4(B) C ¥(0) by Lemma 6 and Lemma 7. We need to show that
%(B) is a right Ore set in 4. Now any affine prime PI algebra has finite, integral
Gelfand-Kirillov dimension, by [KL, Corollary 10.6]. Let GKdim(R) = n. If
PE X then height(P) = 1, so GKdim(R/P)=n — 1, by Schelter’s Catenarity
Theorem [Sch] and [KL, Theorem 10.10]. Since /™ is a nonzero ideal of the
prime PI ring R, GKdim(R/I") = n — 1, by [KL, Proposition 3.15]. Hence

n — 1= GKdim(4) = GKdim(R/I") = GKdim(R/N) = GKdim(R/P)=n — 1.

Thus GKdim(4) = GKdim(4/B) = n — 1, and if P is a minimal prime ideal of
A then GKdim(4/P) =n — 1 also.
Leta EA.and c € €(B) C 4(0). Set E = {¢ EA | ae EcA }. Then left multip-
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lication by a produces an embedding of A/E into A/cA. Thus GKdim(4/E) =
GKdim(A4/c4) <n — 1, since ¢ € €(0). If Pis a minimal prime ideal of 4 then

GKdim(4/E + P) = GKdim(4/E) <n — | = GKdim(4/P).

It follows that E + P/P is an essential right ideal of 4/P, by [KL, Lemma 5.12
and Lemma 5.13]. Thus (E + P) N €(P) + J and so E N €(P) # . An easy
argument shows that E N €(B) # &, and the result follows.

ReEMARK. This is the only place where we use the condition that R is affine
over a field. Everything else works for R affine over a central noetherian
subring.

In our attempt to localize at €(/N) we have now shown that this is possible
modulo 1™, for each m = 1. The usual next step is to use an Artin-Rees type
argument. In order to do this, we need to move back up to the localization of
the trace ring.

ProprosITION 9. If1is the biggest ideal of T that is contained in N, then I 4 is
an ideal of T4 that has the Artin—-Rees property.

Proor. Let J be the Jacobson radical of the semilocal ring Ty.
Then J = N and so I C J, since I CN C N. Now the maximal ideals of
T are induced from the members of X and these are all height one prime
ideals. Hence T is a semilocal noetherian prime PI ring with Krull dimension
one. Thus T,/I, is artinian and so J™ C I, for some m; in a similar
manner one sees that J has the Artin-Rees property. Let E be any right ideal of
T¢. Then there exists n such that ENnJ*CEJ™. Hence ENI;C
EnJ"CEJ™CEl,.

CorOLLARY 10. N is a localizable semiprime ideal of R.

PrROOF. Let a€R and s€.% = €(N). Set E =aR + sR. There exists an
integer m = 1 such that E NI C ET NI C ET4l4 = El,, by Proposition
9. Now there exist d €.%, b €ER and g €I such that ad — sb = g, by Lemma
8. Note that

g=ad —shEENI™MCENIFCEl,=alg+sl,.

Set g = ax + sy, for some x, y €I, and choose ¢ € € such that sc, yc €I. Then
xcT, ycT C I, since I'is an ideal of T. Now there exists an element s, EcT N &,
by Lemma 4. Note that x5, ExcT C I and similarly ys, € 1. Thus ads, — sbs, =
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gs, = axs, + sys, and so a(ds, — xs;) = s(bs, + ys,). Although x, y need not be
in R the elements xs, and ys, are in / and so in R. Set

SZ=dS]_‘xleR and b]=bsl+ySIER

and note that ds, €% and x5, €I C N, so 5,&€ &. Thus the equation as, = sb,
verifies the Ore condition for & in R.

In summary, we have

TueoreM 11. Let R be an affine prime PI algebra and let P be a height one
prime ideal of R. If the trace-closure X = X(P) consists entirely of height one
prime ideals of R, then {N 6(Q)| Q € X} is an Ore set.

Looking at the special case where Tr(P) = { P}, we have

THEOREM 12. Let R be an affine prime PI algebra and let P be a height one
prime ideal of R. Then the following are equivalent:

(1) Tr(P)= {P},

(i) P is right localizable,

(ii1) P is left localizable.

Proor. If Tr(P)= {P} then X(P)= {P}, so Theorem 11 gives (i)= (ii), (iii).

(i))=(1). This is essentially proved in [Bra-W], but although they assume R
noetherian, this condition is not needed at height one. Let P be right localiz-
able and suppose that Q € Tr(P). Thus there exist prime ideals P, Q in T such
that P=PNR,Q=0NRand PNZ=0 N Z. Since T is centrally gener-
ated over R and €(P) is a right Ore set in R, it follows that €(P) is a right Ore
set in 7. Now, certainly,

EP)NPCEP)NPNR=6P)NP=(,

50 €(P) C €(P). Now P and Q belong to the same clique, by [Mii, Theorem 7]

or [Bra-W, Proposition 3}, so €(P)C €(Q). If QZP then Q N €(P)+ &,

thus Q C P. Since height(P) = 1, this forces @ = P. Hence Tr(P) = {P}.
(iii)=> (i) follows in a similar way.

There seems to be little chance of generalising these ideas to primes of height
greater than one. Indeed, lying over may fail and so trace-linkage makes little
sense. Some progress might be possible for rings of generic matrices, for in this
case lying over does hold [Am-S, Theorem 4.3].
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